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A B S T R A C T   

The northern forest-tundra ecotone is one of the fastest warming regions of the globe. Models of vegetation 
change generally predict a northward advance of boreal forests and corresponding retreat of the tundra. Previous 
satellite remote sensing analyses in this region have focused on mapping vegetation greenness and tree cover 
derived from optical multi-spectral sensors. Changes in vegetation structure relating to height and biomass are 
less frequently investigated due to limited availability of lidar data over space and time in comparison with 
optical platforms. As such, there is an opportunity to combine lidar and optical remote sensing products for 
continuous mapping of vegetation structure at high-latitudes, with an emphasis on the forest-tundra transition. In 
this study, we used lidar data from the Ice, Cloud and land Elevation Satellite (ICESat-2) to classify canopy 
presence/absence, and predict canopy height across 120 million hectares of the Canadian forest-tundra ecotone 
at 30 m spatial resolution. Spatially continuous predictors derived from the Landsat satellite archive 
(2012− 2021) and the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Digital 
Elevation Model were used to extrapolate 98th percentile canopy height from the ICESat-2 Land and Vegetation 
Height (ATL08) product using Random Forests models developed in R (version 4.2.2). Model accuracy was 
assessed using data from the Land, Vegetation and Ice Sensor (LVIS), a large-footprint airborne lidar system. The 
overall accuracy of the canopy presence classification was 89%, and canopy presence was detected with 88% 
accuracy. Models of vegetation height showed an overall R2 of 0.54 and RMSE of 2.09 m. Finally, we used these 
methods to map the limit of continuous 3 m forest across Canada and compared our model outputs with forest 
cover from the MODIS and Landsat Vegetation Continuous Fields datasets. This work demonstrates the chal-
lenges and potential for mapping horizontal and vertical vegetation structure within sparse, high latitude forests 
using both lidar and optical remote sensing data.   

1. Introduction 

Satellite observations show that circumpolar vegetation composition 
and productivity are changing in response to rapid increases in air 
temperature (Beck and Goetz, 2011; Berner et al., 2020a; Orndahl et al., 
2022). Notably, changes in vegetation productivity differ across the 
tundra and boreal biomes. While the tundra has shown increases in 
productivity driven by shrub expansion and growth (Berner et al., 
2020b; Myers-Smith et al., 2011; Myers-Smith and Hik, 2018; Seider 
et al., 2022), the boreal has shown weaker increases, or decreases in 
productivity associated with fire and drought stress (Bonney et al., 2018; 
Sulla-Menashe et al., 2018). The transition region between these two 

biomes, described as the forest-tundra ecotone (FTE) covers 1.9 million 
km2 of land and is one of the Earth’s largest ecological boundaries 
(Ranson et al., 2011). The FTE represents a decreasing northward 
gradient of forest cover and density that transitions to shrub and her-
baceous vegetation (Callaghan et al., 2002; Payette et al., 2001). Over 
thousands of years, the distribution of vegetation in the FTE has shifted 
in response to cooling and warming periods in climate (Sulphur et al., 
2016). Ongoing changes in climatecould result in northward advance of 
the forest-tundra boundary, increases in vegetation stature and changes 
in community composition(Chapin et al., 2005; Pearson et al., 2013). 
Pearson et al. (2013) predicts increases in above-ground biomass of 
15–42% by 2050 driven by growth and range expansion of woody 
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shrubs and trees. These changes would have significant impacts on 
global climate by altering above and below-ground carbon storage 
(Wilmking et al., 2006) and surface albedo (Chapin et al., 2005). Thus, 
mapping and monitoring vegetation in the FTE is of importance, both 
regionally and globally. 

Optical satellite datasets derived from AVHRR (Advanced Very High 
Resolution Radiometer), MODIS (Moderate Resolution Imaging Spec-
troradiometer), and the Landsat series of satellites have been used to 
map tree cover (Guo et al., 2020; Montesano et al., 2020; Ranson et al., 
2011), and vegetation productivity (Arndt et al., 2019; Berner and 
Goetz, 2021; Guay et al., 2014; Ju and Masek, 2016) across the 
circumpolar Arctic and sub-Arctic. For example, the MODIS and Landsat 
Vegetation Continuous Fields (VCF) products have been used to map the 
areal extent and recent advances in forest cover within the FTE (Guo 
et al., 2020; Guo and Rees, 2021; Ranson et al., 2011). Trends in the 
Normalized Difference Vegetation Index (NDVI) and the Enhanced 
Vegetation Index (EVI) also suggest that spectral greening (increasing 
productivity) has occurred along the coldest, sparsely forested margins 
of the boreal (Berner and Goetz, 2021; Sulla-Menashe et al., 2018). 
However, the relationship between greening and ground-based vegeta-
tion processes in the FTE are not always clear due to weak associations 
between greening indices and forest cover (Brehaut and Danby, 2018; 
Loranty et al., 2018; Walker et al., 2021). Furthermore, tree cover from 
VCF is defined as the amount of skylight intercepted by tree canopies >5 
m in height (Montesano et al., 2009). However, trees across the FTE may 
be as short as 2–3 m, and VCF products have been shown to overestimate 
tree cover in sparsely forested, shrubby landscapes close to the treeline 
(Ranson et al., 2011; Timoney and Mamet, 2020). 

Integrating multiple types of remote sensing and ground-based 
datasets can provide insights that extend beyond surface spectral char-
acteristics including changes in land cover (Olthof et al., 2009; Wang 
et al., 2020), plant functional type (Orndahl et al., 2022), vertical 
vegetation structure (Bolton et al., 2018a; Margolis et al., 2015; Mon-
tesano et al., 2016), and disturbance history (Hermosilla et al., 2015). In 
particular, structural attributes of vegetation relating to height, volume, 
and biomass are also important in understanding ecosystem dynamics, 
and can be estimated from Light Detection and Ranging (lidar) platforms 
(Lefsky et al., 2002). Small footprint lidar data are typically acquired 
from Airborne Laser Scanning (ALS) systems to measure canopy height, 
which can be used to model basal area, stem volume, and aboveground 
biomass over a range of spatial scales(Bolton et al., 2018b; Goodbody 
et al., 2021; Margolis et al., 2015; Queinnec et al., 2021). These ALS 
systems have ground footprints between 0.1 m–25 m and high vertical 
sampling rates. Thieme et al. (2011) demonstrated that ALS data is 
capable of detecting small trees >1 m in the forest-tundra ecotone with 
90% success. 

One important exception to small-footprint ALS is the NASA LVIS 
(Land, Vegetation and Ice Sensor) instrument, which is an ALS system 
with a large, 17 m footprint (Blair and Hofton, 2020; Feng et al., 2023). 
Sensors such as LVIS utilize full waveform measurements, and can fly 
higher and faster than typical airborne platforms (Lim et al., 2003). LVIS 
data have been used to derive forest stand height (Kellndorfer et al., 
2010) and model above ground biomass (Ni-Meister et al., 2010) in 
temperate-deciduous and mixed-wood forests. As part of the NASA 
Arctic-Boreal Vulnerability Experiment (ABoVE) program, the LVIS in-
strument has also collected data across Alaska and northwestern Canada 
(Blair and Hofton, 2020). These open-access data have been used to 
validate canopy height measurements from spaceborne lidar platforms 
operating at high latitudes (Feng et al., 2023). Given a lack of jurisdic-
tional inventory programs, limited distribution of suitable airports, and 
fuel costs at high latitudes – spaceborne lidar missions provide a means 
to augment, and extend airborne lidar acquisitions to larger and difficult 
to access areas (Coops et al., 2021; Margolis et al., 2015). 

Spaceborne lidar missions can provide data that is are freely avail-
able and analysis ready at global scales. Compared to ALS systems, 
spaceborne platforms have larger ground footprints (11 m–70 m) and 

much lower sampling frequencies (White et al., 2014; Coops et al., 
2021). Lidar missions including the Ice, Cloud and land Elevation Sat-
ellite missions (ICESat; Neumann et al., 2019) and the Global Ecosystem 
Dynamics Investigation (GEDI; Dubayah et al., 2020) have been used to 
map vegetation height (Lefsky, 2010; Liu et al., 2021; Malambo et al., 
2023; Simard et al., 2011) and model above-ground biomass (Margolis 
et al., 2015; Narine et al., 2019; Nelson, 2010; Ni-Meister et al., 2010) 
across a range of temperate and boreal ecosystems. 

ICESat-2 is currently the only spaceborne lidar system operating at 
latitudes above 51.5◦N (Markus et al., 2017). The ATLAS instrument 
onboard ICESat-2 uses three pairs of beams to sample vegetation and 
terrain height every 70 cm along the satellite’s path (Markus et al., 
2017). Photon returns for each pulse are provided in the ATL03 data 
product (Global Geolocated Photon Data) and are classified as canopy, 
top of canopy, or ground. The ATL08 Land and Vegetation Height data 
product aggregates photon returns into 20 m and 100 m segments in the 
along-track direction, and provides summary statistics per segment 
(Neuenschwander and Pitts, 2019). As of Version 5, only 98th percentile 
height is available for the 20 m segments, however other statistics are 
reported for 100 m segments including height percentiles, mean, 
maximum and minimum, (Neuenschwander et al., 2021). Neuensch-
wander et al. (2020) used ALS data to validate the ATL08 Land and 
Vegetation Height product within 100 m segments and reported RMSE 
for terrain and vegetation heights of 0.73 m and 0.56 m, respectively 
across boreal forests in Finland. As a single-photon counting system, 
canopy height estimates from ICESat-2 are subject to noise and are 
influenced by beam strength, time of day, snow cover (Neuenschwander 
et al., 2022) and terrain complexity (Feng et al., 2023; Zhang and Liu, 
2023). 

Generating spatially continuous estimates of vegetation height and 
structure are important goals in forest management and ecosystem 
monitoring (Coops et al., 2021; Goodbody et al., 2021). A large number 
of discrete lidar plots from ALS or spaceborne platforms can be used to 
model continuous structural attributes from optical and radar data 
(Coops et al., 2021; Lefsky, 2010; Malambo et al., 2023; Matasci et al., 
2018; Shah et al., 2020; Sothe et al., 2022; Wulder et al., 2012). For 
example, Matasci et al. (2018) demonstrated use of a time-series of 
Landsat imagery to predict structural metrics from ALS across Canada’s 
650 million hectares (Mha) of forest dominated ecozones using K- 
nearest neighbor imputation. Machine learning algorithms (Malambo 
et al., 2023; Narine et al., 2019; Sothe et al., 2022; Zhang and Liu, 2023) 
and deep learning methods (Shah et al., 2020) are also used to predict 
lidar-based vegetation structure from Landsat data at varying spatial 
scales. However, methods extending spaceborne lidar metrics have not 
focused on model calibration or validation at high latitudes, where 
canopies are generally much shorter and sparser than at lower latitudes 
(Zhang and Liu, 2023). Current global vegetation height products using 
spaceborne remote sensing data tend to overpredict canopy height in the 
forest-tundra and have higher levels of uncertainty due to a lack of 
training data at high latitudes and optimizing predictions for taller 
vegetation(Lang et al., 2023; Lefsky, 2010). The ability to make in-
ferences about vegetation changes in the forest-tundra ecotone with 
existing canopy height products is currently limited. Zhang and Liu 
(2023) mapped canopy height using ICESat-2 and Sentinel data within 
Alaska, however there is still potential to map over larger areas and take 
advantage of the long temporal continuity of the Landsat record. 

To capture the variable and fine-scale nature of changes in vegeta-
tion structure across the FTE, there is a need for remote sensing products 
that capture sufficient detail, are spatially continuous, and validated 
against fine-scale observations (Timoney, 2022; Timoney and Mamet, 
2020). In this analysis, we used the ICESat-2 ATL08 Land and Vegetation 
Height data product (Neuenschwander and Pitts, 2019) to model canopy 
presence or absence and height across the Canadian forest-tundra 
ecotone at 30 m spatial resolution using Landsat surface reflectance, 
and topographic information. These models were validated against an 
independent source of ALS lidar data from the LVIS instrument and were 
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used to map vegetation structure within a study area covering 120 Mha. 
Finally, we demonstrated the use of these models to map the north-
ernmost limit of continuous forest and identify changes in vegetation 
structure across the ecotone. 

2. Methods 

2.1. Study area 

In this analysis, we focus on approximately 120 million hectares 
across the Canadian forest-tundra ecotone within Yukon, Northwest 
Territories and Nunavut. This region traverses the traditional territories 
of many distinct northern Indigenous peoples including the Gwich’in, 
Dene, Inuit and Cree (Fig. 1). Climate, soils and vegetation vary widely 
across the latitudinal forest-tundra ecotone and along an east to west 
gradient (Timoney et al., 1992). Our study area includes the Taiga 
Plains, Taiga Shield and the Southern Arctic ecozones. The Taiga Plains 
and Taiga Shield ecozones are sometimes referred as “the land of little 
sticks”, as short, cool growing seasons and long, cold winters severely 
limits vegetation growth and productivity (Ecosystem Classification 
Group, 2008). Across the study region mean annual temperature and 
total annual precipitation ranges from approximately − 11 to − 6 ◦C and 
150–400 mm, respectively (Vincent et al., 2020; Wang et al., 2016). The 
dominant tree species close to the forest limit are white spruce (Picea 
glauca) and black spruce (Picea mariana), which exhibit a gradient of 
taller denser stands in the south that transition to sparse, isolated stands 
near the treeline. The Southern Arctic is generally treeless, and is 

characterized by dwarf, low-shrub and graminoid tundra. Permafrost is 
continuous in the northwestern part of the study area, but both 
continuous and discontinuous permafrost are present in the central and 
eastern parts of the study area. 

2.2. Overall workflow 

The workflow for this research followed three primary steps: 1) 
deriving spectral and topographic predictor variables from a time-series 
of Landsat surface reflectance data and a digital elevation model, 2) 
spatially joining predictor variables to 98th percentile canopy height 
(h_canopy) from the ICESat-2 ATL08 Land and Vegetation Height 
Product, and 3) training and validating two Random Forest models to 
predict canopy presence or absence and canopy height across the study 
area (Fig. 2). To validate modeled canopy height and presence we used 
the LVIS Geolocated Surface Elevation and Canopy Height data product 
(LVISF2), which provides a range of vegetation structural metrics from 
full-waveform airborne lidar (Blair and Hofton, 2020). Data processing 
and analysis were conducted in R (version 4.2.2; R Core Team, 2022) 
using the terra (Hijmans, 2022b), data.table (Dowle and Srinivasan, 
2022), dplyr (Wickham et al., 2022), ranger (Wright and Ziegler, 2017), 
and arrow (Richardson et al., 2022) packages and plots were made using 
the ggplot2 package (Wickham, 2016). 

Fig. 1. Map of the northwestern arctic and sub-arctic of Canada. The dashed lines show the extent of the forest-tundra ecotone study area (loosely defined as the 
region encompassing the Taiga-Southern Arctic boundary). The inset map shows the location of the study area within Canada. The grey points show the 889,366 
ICESat-2 ATL08 segments used to train and test the Random Forests models. The orange lines show the extent of the 2019 LVISF2 product used as validation data 
(Blair and Hofton, 2020). 

H. Travers-Smith et al.                                                                                                                                                                                                                         



Remote Sensing of Environment 305 (2024) 114097

4

2.3. Data 

2.3.1. Landsat BAP image composite data 
Landsat Best Available Pixel (BAP) composites were generated using 

data from Landsat-5, 7 and 8 to create annual cloud and gap-free mo-
saics of surface reflectance across Canada (Hermosilla et al., 2015). BAP 
composites were created from multiple images acquired over a single 
growing season, and a pixel scoring function was used to select the best 
pixel for the season based on sensor, acquisition day, distance to clouds, 
cloud shadow and atmospheric opacity (White et al., 2014). In this 
analysis, we defined a 10-year time period from 2012 to 2021 (inclu-
sive), and calculated the median BAP reflectance and the linear slope 
across six Landsat spectral bands (red, green, blue, NIR, SWIR1, SWIR2), 
and four indices, Tasseled Cap Brightness (TCB), Tasseled Cap Wetness 
(TCW), Tasseled Cap Greenness (TCG) and the Enhanced Vegetation 
Index (EVI). Tasselled Cap transformations were calculated using the 
equations in Hermosilla et al. (2022) and have been shown to be sen-
sitive to high latitude vegetation change and a range of land cover types 
(Chen et al., 2021; Fraser et al., 2014). We used a ten-year period to 
capture temporal trends in spectral reflectance and account for noise 
along a pixel time series. The combination of two metrics (median and 
slope) and ten bands/indices yielded a total of 20 variables for modeling 
canopy presence and height (Table 1). The 2012–2021 period was 
chosen to correspond with the ICESat-2 data acquired from 2019 to 

2021. Prior to modeling, we used the Landsat Composite-2-Change 
(C2C) data product (Hermosilla et al., 2016) to remove pixels that 
experienced a stand replacing disturbance between 2012 and 2021. 

2.3.2. ICESat-2 ATL08 data 
ICESat-2 is a NASA spaceborne lidar platform launched in 2018 to 

characterize the structure of the Earth’s ice caps, vegetation and ground 
surface (Markus et al., 2017). The ATLAS instrument onboard ICESat-2 
uses three pairs of green (532 nm) lasers and a single-photon counting 
system (Markus et al., 2017). The lasers illuminates the ground every 70 

Fig. 2. Flowchart showing methods workflow used to predict and validate canopy presence/absence and canopy height across the forest-tundra ecotone.  

Table 1 
Spectral and topographic predictor variables used to train Random Forests 
models.  

Variable Time period 

Spectral bands (Landsat)  
Blue, green, red, NIR, SWIR1, SWIR2 10-year median, 10-year 

slope 
Spectral Indices (Landsat)  
EVI, TCB, TCW, TCG 10-year median, 10-year 

slope 
Topographic (ASTER)  
Elevation, slope, aspect, roughness, Topographic 

Position Index (TPI) 
–  
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cm along the satellite’s path, with each pulse corresponding to a circular 
footprint approximately 11 m in diameter (Magruder et al., 2021). The 
outgoing laser is organized into strong and weak beams, with approxi-
mately four times more photon returns expected from the strong beams 
compared to the weak beams (Neuenschwander et al., 2022). Within the 
boreal forest, the strong beam normally returns between zero and two 
photons per footprint (Neuenschwander et al., 2022). Geolocated 
photon returns are then classified as ground, canopy, top of canopy or 
noise using the DRAGANN algorithm (Neuenschwander and Pitts, 
2019). The ATL08 aggregates classified photon returns into 100 m and 
20 m segments along the satellite’s ground track, and calculates topo-
graphic and canopy height metrics within each segment (i.e. mean, 
median, standard deviation and percentiles; Neuenschwander and Pitts, 
2019). 

We used the 98th percentile canopy height (h_canopy) within 20 m 
segments to correspond with the spatial resolution of Landsat pixels (30 
m). ATL08 data (Version 5) were downloaded from NASA’s National 
Snow and Ice Data Center (version 5; Neuenschwander et al., 2021). 
ATL08 segments were filtered based on quality control flags within the 
data product, (i.e. water, blowing snow, clouds), and the terrain quality 
flag (terrain_flg), which determines if the estimated ground height de-
viates beyond an acceptable threshold from a reference DTM. Due to the 
low number of photon returns expected from sparse vegetation, we only 
used data acquired by the strong beams (Neuenschwander et al., 2022). 

As a single photon counting system operating in the visible wave-
length range, solar background noise (i.e. photons scattered by the at-
mosphere) can significantly impact the ability of the DRAGANN 
algorithm to separate signal and noise photon returns (Neuenschwander 
and Pitts, 2019). To improve the signal to noise ratio and resulting 
canopy height estimates, Neuenschwander et al. (2022) recommend 
using data acquired at night. Acquisitions from peak growing season 
(mid-summer) are also preferred in the literature due to greater canopy 
cover (Mulverhill et al., 2022; Neuenschwander et al., 2022). As much of 
our study area experiences nearly 24 h of daylight in the summer, we 
compared ATL08 canopy height retrievals from the summer (July–Au-
gust) and winter (December–January) against LVISF2 from the same 
region. Wintertime acquisitions can be collected in darkness, but vege-
tation canopies are expected to be snow covered. Overall, winter ac-
quisitions showed better agreement with LVIS canopy heights (see 
section 3.1) and further analysis was conducted with ATL08 segments 
collected from December 2019 to January 2020. Across the study area 
we retained a total of 889,366 segments distributed across all ecozones. 
Overall, 52%, 17.5% and 30.5% of segments were located in the 
Southern Arctic, Taiga Plain and Taiga Shield ecozones, which corre-
spond to 34%, 14% and 47% of the total study area, respectively. 

2.3.3. LVISF2 validation data 
The LVIS instrument is a full-waveform lidar system generally flown 

at an altitude of 10 km (Blair and Hofton, 2020). The laser footprint on 
the ground varies between 10 m and 25 m and data is collected along 2 
km wide transects. The LVIS Level-2 Geolocated Surface Elevation and 
Canopy Height Product (LVISF2; Version 1) contains geolocated co-
ordinates and canopy metrics calculated from the full-waveform mea-
surements. In this study, we used approximately 33,000 km2 of LVIS 
data acquired as part of NASA’s Arctic-Boreal Vulnerability Experiment 
(Fig. 1). Data covering the Canadian forest-tundra ecotone were ac-
quired on four dates in 2019: July 15, July 16, July 25 and August 8. The 
LVISF2 data product is delivered as points on a 10x10m grid. We 
extracted maximum canopy height and height at the 95th and 98th 
percentiles in each grid cell and aggregated the data to match the spatial 
resolution of Landsat based on the maximum LVIS height percentiles 
within a 30 m pixel. 

2.3.4. ASTER global digital elevation model 
Five topographic variables (elevation, slope, aspect, roughness, and 

Topographic Position Index) were derived from the ASTER Global 

Digital Elevation Map at 30 m spatial resolution (Tachikawa et al., 2011; 
Version 2). Slope, aspect, roughness and Topographic Position Index 
(TPI) were calculated from the DEM using the adjacent eight pixels in R 
using the terrain function in the raster package. Roughness is calculated 
as the difference between the maximum and minimum elevation of a 
pixel and its neighbours, and TPI is the difference in elevation between a 
pixel and the mean of its neighbours (Hijmans, 2022a). 

2.3.5. Comparison with existing maps 
We compared our maps of canopy height and presence to the three 

independent data sources: the MODIS Terra Vegetation Continuous 
Fields dataset (DiMicelli et al., 2015), Landsat Vegetation Continuous 
Fields dataset (Sexton et al., 2013), and fine-scale photo interpretation 
of the Canadian forest-tundra transition by Timoney et al. (1992). The 
MODIS VCF dataset represents the sub-pixel fraction of tree cover, non- 
treed vegetation and non-vegetated surfaces at 250 m resolution 
generated at an annual time step from 2000 to 2020. The Landsat VCF 
dataset represents the sub-pixel fraction of forest >5 m in height across 
the years 2000, 2005, 2010 and 2015. The Timoney et al. (1992) 
mapping represents the boundaries of the forest-tundra ecotone acorss 
western and central Canada, interpreted from 1314 air photos. Bound-
aries for the forest limit, forest-tundra and tree limit were defined using 
the 1:1000, 1:1 and 1000:1 ratio of forest to tundra land cover, 
respectively. This work represents the most comprehensive and high- 
resolution mapping effort of the Canadian FTE using high resolution 
air photo interpretation. 

2.4. Modeling canopy presence and canopy height 

We defined a spatial support unit (SSU) around each ATL08 segment 
centerpoint as a 20 m circular buffer and extracted spectral attributes 
(10-year median and slope) and topographic information (elevation, 
slope, roughness, TPI, and aspect) for pixels intersecting with a given 
SSU. The mean value of each variable within the SSU were joined to the 
canopy height attributes of each segment. We also used the C2C data 
product to extract information related to disturbance history for each 
SSU (Hermosilla et al., 2016). Segments within undisturbed and spec-
trally homogenous SSUs (defined as <10% coefficient of variation of 
spectral values) were selected for modeling canopy presence and canopy 
height. We used homogenous SSUs to ensure that models were trained 
on a minimum number of pixels representing sudden spatial changes in 
landcover or mixed land cover types (Mulverhill et al., 2022). 

Our modeling approach used two steps 1) a Random Forests classi-
fication model to predict canopy presence or absence, and 2) a Random 
Forests regression model to predict canopy height. Random Forests 
models were trained using the 20 spectral and 5 topographic variables as 
predictors in the R package ranger (Wright and Ziegler, 2017). First, we 
classified ATL08 segments as ‘canopy present’ or ‘canopy absent’ based 
on the number of canopy photon returns and the segment land cover flag 
(segment_landcover). Segments were classified as canopy absent when 
there were fewer than four canopy, or top of canopy photon returns in 
the 20 m segments (i.e. canopy height is assigned ‘NA’ in the ATL08 
product; Neuenschwander et al., 2021), and where the segment land 
cover was either ‘herbaceous’, ‘moss and lichen’ or ‘bare sparse vege-
tation’. This land cover classification is based on the 2019 Copernicus 
Global Land Cover dataset at 100 m spatial resolution, which has been 
spatially joined to ATL08 segment meta data. The global producers ac-
curacy for these classes are 71.8%, 42.0% and 91.7%, respectively 
(Buchhorn et al., 2020). The Random Forests classification model was 
trained to predict canopy presence and absence using an even sample of 
SSU’s by canopy presence class (n = 50,000 per class). Next, we trained a 
Random Forests regression model to predict canopy height. To ensure 
the entire range of canopy height was represented in the model, seg-
ments were grouped into clusters based on height using the k-means 
function in R, and an equal number of samples were drawn from each 
cluster (n = 30,000). Pixels where the probability of canopy presence 
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was <0.5 were assigned a height of 0. 
To assess model performance, we extracted the out of bag classifi-

cation accuracy for the canopy presence model and the coefficient of 
determination (R2) and the root mean square error (RMSE) from the 
canopy height model. Next, the models were tested on a dataset of all 
undisturbed segments (including segments with heterogenous SSUs). 
We evaluated model performance using Mean Absolute Error (MAE), 
Mean Absolute Percent Error (MAPE), Root Mean Square Error (RMSE) 
and R2 for the entire dataset and within height classes <2 m (low stature 
veg), 2-5 m (small trees), 5-10 m (treed), >10 m (tall trees). The canopy 
presence model was tested on a dataset of 200,000 segments split evenly 
between the canopy present and absent classes. The canopy height 
model was tested on 120,000 segments, which were first clustered by 
height with an equal number of samples drawn from each cluster. 

2.5. Model validation using LVISF2 

We used the LVISF2 dataset to further evaluate the performance of 
the Random Forest canopy presence and height models. In total, there 
were 126 LVISF2 segments across the study area. As the input Landsat 
surface reflectance layers represents a 10-year median, we removed 
pixels that underwent a stand-replacing disturbance within the 
2012–2021 time period. For undisturbed pixels where a canopy was 
present, we evaluated canopy height predictions using MAE, RMSE, 
MAPE and bias against LVIS 98th percentile canopy height, and exam-
ined error statistics across different height classes (0-2 m, 2-5 m, 5-10 m 
and > 10 m). To understand vegetation structure in pixels where the 
model did not detect a canopy, we calculated summary statistics across 
the LVIS canopy height metrics for pixels in the canopy absent class. 

2.6. Delineating continuous forest 

From the resulting canopy height and presence maps, we used an 
automated workflow to delineate the northernmost boundary of 
continuous forest >3 m in height (Payette et al., 2001; Timoney et al., 
1992). First, we calculated average canopy height within 1 km grid cells 

then classified each cell using a 3 m threshold. Next, simplified polygons 
were created from the classified raster using the Raster to Polygon tool 
in ArcGIS Pro (version 2.9.5). From these polygons, the Buffer and 
Generalize Line tools were used to create smoothed continuous bound-
aries representing 3 m canopy height. This boundary was then compared 
to mapping of the forest-limit, forest-tundra and tree limit by Timoney 
et al., (1992; Fig. 6). 

3. Results 

3.1. Impact of snow cover and daylight on ATL08 data 

Overall, median canopy height measured using ICESat-2 were higher 
(3.92 m) than LVIS (2.15 m). Wintertime ICESat-2 data showed better 
agreement than data acquired in the summer, with median heights of 
3.81 m and 4.02 m, respectively (Fig. 3). Across the study area, LVIS 
canopy height ranged from 0.57 to 21.87 m, while wintertime and 
summertime ICESat-2 data ranged from 0.54 to 31.34 m and 0.52–16.32 
m. Summer and winter ATL08 retrievals were similar for vegetation 
within the continuous forest at lower latitudes, but diverged north of 
68◦N as canopy heights decreased (Fig. 3). Fig. 3 indicates that median 
LVIS canopy height fell below 3 m in the 67.7-68 N latitudinal bin 
(Fig. 3). North of 68◦N, wintertime ICESat-2 data more closely followed 
declines in canopy height apparent in the LVIS data (Fig. 3). Median 
wintertime ICESat-2 data fell below 3 m in the 68–68.3 N range, but 
summertime data did not decrease to 3 m until the 68.6–68.9 N range 
(the northernmost latitudinal bin). 

3.2. Mapping canopy presence and height 

We applied the Random Forests models to map spatial variation in 
canopy height and presence at 30 m resolution across the Canadian 
forest-tundra ecotone (Fig. 4). Overall, this map shows the expected 
transition from high and continuous canopies in the south, to lower and 
discontinuous canopies in the north (Fig. 4). Within the Taiga Plain, 
Taiga Shield and Southern Arctic ecoregions, canopy was detected in 

Fig. 3. Boxplots (left) showing height distribution for summer (July–August) and winter (December–January) ICESat-2 ATL08 98th percentile canopy height and 
LVIS 98th percentile canopy height by increasing latitude. The red line shows the 3 m height limit. The map (right) shows the distribution of ICESat segments (light 
green and dark green points) and LVIS transects (blue) across the forest-tundra ecotone. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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86%, 58% and 21% of pixels, respectively. The average height for pixels 
with a canopy was 5.37 m. The distribution of canopy height also varied 
across ecoregions (Fig. 5). Overall, the Southern Arctic had the lowest 
canopy heights with a mean of 4.14 m. The Taiga Plain and Taiga Shield 
showed similar height distributions, with average canopy heights of 
5.99 m and 5.47 m, respectively. 

Across a 300 km transect crossing the boundary between the Taiga 
Plain and Southern Arctic, our predictions of the 98th percentile canopy 
height follow similar declines in tree cover derived from the MODIS and 
Landsat VCF datasets. The fitted trend in canopy height along the 
transect can be used to define the width of the transition region between 
the forest and tundra. For example, canopy height begins to decrease 
towards 0 m at 155 km along the transect and reaches 0 m at 260 km 

(Fig. 6). Within this transition (155–260 km), region tree cover ranges 
from 0 to 12% and 0–10% from MODIS and Landsat VCF, respectively. 

The automatic delineation of continuous 3 m forest extent (Fig. 7) 
corresponds well with the 1:1 forest-tundra boundary mapped by Tim-
oney et al. (1992). Within aggregated 1 km cells, 99% of forested 
patches are below the 1:1000 tree limit defined by Timoney. Two 
clusters of forested cells totaling 50 ha in area were mapped above the 
tree limit. Subsequent examination of these areas on high resolution 
WorldView-2 imagery from 2019 show that they are likely unforested 
wetlands. 

3.3. Random forests model assessment 

Overall, the Random Forests models showed strong predictive ac-
curacy for spectrally homogenous SSUs used for model training. The out 
of bag error for the Random Forests classification of canopy presence or 
absence was 7.3%, with 8.7% error in canopy absence class and 5.8% 
error in canopy presence class. For the canopy height regression model, 
the R2 was 0.55 and the RMSE was 1.92 m. Compared with the dataset 
used to train the models, both models showed slightly reduced perfor-
mance on a testing dataset containing samples of the remaining SSU’s, 
including SSU’s with a high coefficient of variation. Across both classes, 
the canopy presence/absence model had an 11% misclassification rate, 
with 12% error in the canopy presence class and 9% in the canopy 
absence class (n = 100,000 per class). The most important variables for 
predicting canopy presence or absence were median surface reflectance 
in the SWIR1 band, median TCB and median TCW. 

The canopy height model had an overall R2 of 0.54 and RMSE of 2.09 
m (n = 120,000; Table 2). Model performance was greatest for canopies 
between 5 and 10 m, with an RMSE of 1.56 m and MAPE of 17% 
(Table 2), and approximately 45% of segments across the entire dataset 
fell within this range (Table 2). The canopy height model generally 
underpredicted canopies exceeding 10 m in height (bias: − 3.48 m, 
MAPE: 28%; Table 2) and overpredicted heights below 2 m (bias: +1.64 
m, MAPE: 137%; Table 2). Across ecozones, the Taiga Plains showed the 
best performance with MAPE of 34.8% compared with the Taiga Shield 
and Southern Arctic with MAPE of 55.5% and 61.1%, respectively 
(Table 2). This likely reflects the higher mean canopy height across the 
Taiga Plains, resulting in greater overall accuracy. For the canopy height 

Fig. 4. Map of canopy height and presence across the Canadian forest-tundra transition at 30 m spatial resolution. The red borders show the extent of the Taiga Plain, 
Southern Arctic and Taiga Shield ecoregions. White areas represent water and areas outside the study region. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Density plot of the probability density function of canopy height (m) for 
across the Southern Arctic, Taiga Plains and Taiga Shield ecoregions. Note this 
only includes pixels where the probability of canopy presence was >0.5. 
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regression model, the most important variables were median TCB, and 
median surface reflectance in the NIR and SWIR2 bands. 

3.4. Independent validation using LVIS 

Overall, LVISF2 98th percentile height showed moderate agreement 
with the Random Forests canopy height predictions with an R2 value of 
0.44 and an overall RMSE of 2.69 m (Table 3; Fig. 8). Modeled canopy 
heights were most accurate in the 5–10 m range, with RMSE of 1.74 m 
and MAPE of 18.8% (Table 3). Model performance decreased when 
predicting the highest and lowest canopies, where canopies <2 m were 
overestimated (Bias: +3.23 m) and canopies >10 m were under-
estimated (Bias: − 3.62 m; Table 3). The distribution of continuous LVIS 
canopy heights were distinct for pixels classified with and without a 
canopy present (Fig. 9). The mean and range of canopy height was 
smaller for the canopy absent class compared to the canopy present class 
(Fig. 9). For pixels where the Random Forests classification model did 
not predict a canopy, the mean LVIS 98th percentile height was 1.20 m 
(Fig. 9). 

4. Discussion 

Lidar observations play an important role in understanding global 
changes in vegetation structure (Schimel et al., 2015). In particular, 
canopy height derived from lidar can be used to quantify above-ground 
biomass and carbon storage (Lefsky et al., 2002; Simard et al., 2011). 
However, lidar data acquired by airborne sensors are limited in spatial 
extent, and data from spaceborne platforms are not spatially continuous. 
Several approaches have been used to successfully extrapolate lidar 
observations from ICESat, GEDI, and ALS over broad areas using passive 
remote sensing products (Coops et al., 2021; Matasci et al., 2018; 
Wulder et al., 2012). For northern ecosystems, ICESat-2 is the only 
spaceborne ranging-lidar system operating above 51.5◦ latitude where 
small footprint ALS data is limited. In this research, we integrated 
ICESat-2 canopy height estimates with Landsat BAP composites to pro-
duce maps of canopy presence and height across 120 million hectares of 
the Canadian forest-tundra ecotone at 30 m spatial resolution. We 
demonstrated the use of these maps to derive the limit of continuous 3 m 
forest and map variation in vertical structure across the ecotone. As this 
approach exclusively uses spaceborne remote sensing products, it can be 
applied to other areas of the circumpolar and can be updated as new 
data from the Landsat and ICESat-2 missions becomes available. 

4.1. Model performance and considerations when using ATL08 data at 
high latitudes 

Error metrics show that our workflow was effective in classifying 
canopy presence and predicting height. Overall, canopy presence was 
detected with 88% accuracy and the canopy height model showed a 
MAE of 2.10 m and R2 of 0.45 when compared to independent ALS data. 
These values are consistent with similar work by Malambo et al. (2023) 
and Sothe et al. (2022) who also modeled ICESat-2 canopy heights using 
Landsat data in Texas and forested ecoregions of Canada. These studies 
reported MAE of 2.09 m and 3.4 m, and R2 of 0.36 and 0.46, respec-
tively. Similarly, Narine et al. (2019) used ICESat-2 to model above- 
ground biomass using Random Forests and deep learning methods, 
achieving R2 values of 0.64–0.67 in a southern pine forest. Recently, 
Lang et al. (2023) used GEDI, Landsat and Sentinel-2 data to generate 
spatially continuous estimates of global canopy height. However, these 
models generally show higher predictive uncertainty in the forest- 
tundra due to the lack of GEDI training data at high latitudes and 
model optimization for higher stature vegetation (Lang et al., 2023). 
Canopy height estimates were validated using LVIS data for three tiles 
within northern Canada, and Lang et al. (2023) reported RMSE of 2.8 m, 
4.6 m and 5.3 m for tiles with average heights of 4.3 m, 8.5 m and 7 m, 
respectively. For canopies between 2 and 5 m our models show similar 
RMSE (2.36 m), but show more substantial improvements for canopies 
in the 5-10 m range with RMSE of 1.74 m and bias of − 0.33 m. Our 
model outputs are developed on localized training samples and are also 
not impacted by tiling effects reported by Lang et al. (2023) at high 
latitudes, thus making them more appropriate for continuous mapping 
of the forest limit. 

Our method differs from previous analyses by modeling canopy 
presence or absence, and then estimating height where a canopy was 
present. This step is important in the forest-tundra ecotone where the 
distribution of vegetation is patchy and exhibits a strong gradient across 
the ecotone (Timoney et al., 1992). Our approach also allows canopy 
presence to change over time, as it does not rely on ancillary data or 
static maps of forest cover. For pixels in the canopy absent class, the 
mean LVIS height at the 98th percentile was 1.20 m, suggesting that the 
classification was ecologically meaningful as these pixels likely repre-
sent low-stature shrub and herbaceous vegetation. 

While combining height and presence maps allows us to mask re-
gions without a detectable canopy, misclassification in the canopy 
presence layer can result in overestimation of vegetation height at some 
tundra sites above the tree limit. Land cover with different vegetation 

Fig. 6. Modeled 98th percentile canopy height, MODIS VCF Percent Tree Cover 
and Landsat VCF Tree Cover at 250 m intervals along a transect covering the 
forest-tundra ecotone (top). The blue line shows the smoothed trend in height 
and cover fit using a Generalized Additive Model. The dashed red lines show the 
approximate width of the forest-tundra ecotone and the solid line indicates the 
limit of continuous 3 m canopy height. The inset maps show high resolution 
satellite imagery from WorldView-2 imagery for two locations along the tran-
sect (bottom). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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structure can appear spectrally similar, contributing to false positives in 
the canopy presence layer. While 99% of forested grid cells occurred 
below the 1:1000 tree limit, we observed two small patches of 3 m 
‘forested’ vegetation well above the limit (Fig. 6). Subsequent validation 
using WorldView-2 imagery from 2019 show that these areas are low- 
lying wetlands, likely covered by graminoid tundra (<0.2 m in 
height). These areas both represent wet, vegetated land cover types with 

moderate green and NIR reflectance, and thus are spectrally similar to 
forested wetlands at lower latitudes. This shows the potential for over-
estimating canopy heights in some green and wetland areas, high-
lighting the importance of using existing knowledge of forest 
distribution and high-resolution imagery to confirm anomalous results 
from remote sensing models. Additional environmental data, such as 
vegetation phenology (Bolton et al., 2020) or higher spatial resolution 
land cover maps (Hermosilla et al., 2022) may help separate evergreen 
and broadleaf shrubs, thus constraining canopy height in these areas. 

The level of agreement between modeled and actual canopy height 

Fig. 7. Map of 3 m canopy distribution, green colour indicates average height of at least 3 m in a 1 km grid cell. The black line delineates the northern extent of 
continuous forest (the southern extent of continuous forest extends beyond the study area). The dashed lines show the forest limit, forest-tundra and tree limits 
mapped by Timoney et al. (1992). Red boxes show non-spatially congruous regions above the tree limit that were examined using high-resolution (<1 m spatial 
resolution) WorldView-2 imagery. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE), Root Mean 
Square Error (RMSE), and bias for the Random Forests regression model pre-
dicting canopy height on a testing dataset containing all undisturbed ATL08 
segments with a canopy present. Error metrics are stratified by height and 
ecozone. The overall r2 was 0.54 (n = 120,000).  

Height Class MAE 
(m) 

MAPE 
(%) 

RMSE 
(m) 

Bias 
(m) 

Proportion of all 
ATL08 segments 

<2 m 1.64 137 2.28 +1.62 17% 
2-5 m 1.51 48.9 1.94 +1.26 34% 
5-10 m 1.20 16.9 1.56 +0.60 45% 
>10 m 3.5 28.1 4.74 − 3.48 4% 

Ecozone 

Southern 
Arctic 

1.35 61.1 2.00 0.43 52% 

Taiga Plains 1.43 34.8 1.89 0.19 17% 
Taiga Shield 1.57 55.5 2.16 0.56 27% 
Overall 1.50 60.53 2.09 0.40 –  

Table 3 
Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE), Root Mean 
Square Error (RMSE) and bias of canopy height predictions and LVIS 98th 
percentile canopy height. The overall R2 was 0.45 (n = 30,000).   

MAE 
(m) 

MAPE 
(%) 

RMSE 
(m) 

Bias 
(m) 

Proportion of all LVIS 
30 m pixels 

<2 m 3.12 288.0 3.67 +3.12 19% 
2-5 m 1.98 61.7 2.36 +1.89 41% 
5-10 m 1.37 18.8 1.74 − 0.33 34% 
>10 m 3.66 29.1 4.22 − 3.62 4% 
Overall 2.10 73.94 2.66 +0.5 –  

Fig. 8. Canopy height predicted by Random Forests against the validation 
dataset, LVIS 98th percentile canopy height. The dashed red line is the 1:1 ratio 
between observed and predicted values. The colour indicates the number of 
cases in each hexagon cell. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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was likely impacted by the modeling algorithm, as well as inaccuracies 
at the sensor and data level. We observed the most accurate height 
predictions towards the centre of the height distribution (5-10 m), and 
decreasing accuracy for very high (>10 m) and low (<2 m) canopies. 
This is likely due to the Random Forests algorithm, as well as potential 
inaccuracies at the ATLAS instrument and ATL08 data product levels. 
First, Random Forests regression models generate predictions using the 
average output of many decision trees, which tends to pull extreme 
predictions towards the mean, and truncates the range of predicted 
values compared to the input dataset (Wright and Ziegler, 2017). This 
would lead to decreased ability to predict canopy height at the extreme 
ends of the height distribution. At the sensor and data level, previous 
studies have also observed underestimation of high canopies and over-
estimation of low canopies for ICESat-2 canopy height products (Feng 
et al., 2023; Liu et al., 2021; Neuenschwander and Pitts, 2019). Un-
derestimation of tall canopies likely reflects the point density of the 
ATLAS sensor (0–2 photon returns per ~11 m footprint), which makes it 
less likely that photon returns will come from the top of the canopy 
where foliage is sparse (Neuenschwander et al., 2022; Neuenschwander 
and Pitts, 2019). The apparent overestimation of shorter canopies is less 
clear, but may be related to errors associated with estimating terrain 
height (Feng et al., 2023; Neuenschwander and Pitts, 2019). While 
ICESat-2 shows improved ability to resolve complex topography 
compared to the previous ICESat mission, both terrain and canopy 
heights are likely impacted by steep slopes >30 degrees (Feng et al., 
2023; Liu et al., 2021). Due to high relative error for canopies <2 m, our 
results show limited use of ATL08 data to reliably detect the northern 
transition of shrub to graminoid tundra present in the northernmost 
range of our study area. 

Due to persistent snow cover, seasonal variation in daylight, and 
lower overall canopy height, the boreal-tundra vegetation transition 
poses unique challenges for ICESat-2 canopy height retrievals. In these 
conditions, we found that season (summer vs winter) substantially 
impacted ATL08 canopy height estimates, especially for canopies close 
to the forest limit (Fig. 2). Compared to summertime data, the distri-
bution of canopy height from data collected in the winter showed better 
agreement with LVIS vegetation heights from the same region (Fig. 2). 

These observations likely reflect improved detection of photon returns 
from the ground and canopy as a result of nighttime acquisitions and 
greater reflectivity of snow-covered surfaces (Feng et al., 2023; Neu-
enschwander et al., 2022). 

As a single-photon counting system operating with 532 nm (green) 
lasers, the ATLAS instrument is expected to be susceptible to solar 
background noise. Nighttime data significantly reduces the number of 
photon returns scattered in the atmosphere and increases the photon 
signal to noise ratio (Neuenschwander et al., 2022). Snow cover may 
also improve canopy height estimates, as greater reflectivity of snow 
covered surfaces also increases the number of signal returned to the 
sensor (Neuenschwander et al., 2022). While a higher number of photon 
returns do not guarantee more accurate canopy height estimates, more 
signal photons from the ground and canopy should improve the ability 
of the DRAGANN algorithm to accurately classify photons as ground, 
canopy and noise (Feng et al., 2023; Neuenschwander et al., 2022). 
Future work using ATL08 data in circumpolar regions should carefully 
consider how snow and solar background noise impact the consistency 
of canopy height estimates. 

4.2. Integration with existing knowledge and potential for future work 

This work provides a method to improve broad-scale estimates of 
canopy height and presence at high latitudes. This information could be 
used to estimate aboveground carbon pools, monitor changes in vege-
tation structure, or assess wildlife habitat availability (Kurz et al., 2013; 
Payette et al., 2001). At lower latitudes, canopy height is an important 
forest structural attribute used to assess aboveground biomass and forest 
carbon stocks (Kurz et al., 2013; Lefsky, 2010; Lefsky et al., 2002). In 
Canada, stand level forest inventories are routinely collected across 
managed portions of temperate and southern boreal regions, but 
northern boreal forests have more limited and spatially focused moni-
toring programs (Kurz et al., 2013). Satellite remote sensing products, 
such as the one presented here, provide a means to estimate canopy 
height in areas that would be difficult to access otherwise. 

This work expands on research using optical remote sensing to 
monitor vegetation greenness and forest cover in northern ecosystems 
(Berner et al., 2020b; Olthof et al., 2009; Ranson et al., 2011; Wang and 
Friedl, 2019), and improves existing models of global canopy height 
(Lang et al., 2023; Lefsky, 2010; Simard et al., 2011) within the forest- 
tundra ecotone. Previous work using MODIS Vegetation Continuous 
Fields indicate that forest cover has increased in some parts of the 
circumpolar (Guo and Rees, 2021; Olthof and Pouliot, 2010). However 
more work is needed to validate and train these products at high lati-
tudes, which may overestimate forest cover and height in lightly 
forested regions with shrubby understories (Ranson et al., 2011; Tim-
oney and Mamet, 2020). 

The broad extent (120 mHa) and moderate spatial resolution (30 m) 
of our maps provide insight into the northern extent of boreal forests, 
which can be compared to the theoretical limit of forest growth deter-
mined by growing season temperature. At a global scale, the extent of 
continuous forests generally corresponds to growing season air tem-
peratures of 6–7 ◦C (Körner and Paulsen, 2004). However, despite rapid 
increases in air temperature over the past century, many latitudinal 
treelines have not advanced northward with temperature isotherms 
(Lantz et al., 2019; Maher et al., 2021; Rees et al., 2020; Timoney and 
Mamet, 2020; Travers-Smith and Lantz, 2020). The difference between 
temperature isotherms and the current position of the tree or forest line 
provides an important metric for calibrating models of vegetation 
change (Mengtian et al., 2017). We used standard geospatial tools to 
automatically delineate the northernmost boundary of continuous for-
ests across 6000 km. This limit showed strong correspondence with the 
1:1 limit forest-tundra boundary previously mapped by Timoney et al., 
(1992; Fig. 7). Agreement was particularly strong across the western and 
central parts of the study region and greater differences occurred across 
the southeastern part of the study area, where our analysis suggests that 

Fig. 9. LVIS height metrics (maximum, 98th percentile and 95th percentile 
height) for pixels classified with (green) and without a canopy present (blue) by 
the Random Forests model. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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the forest-tundra boundary is further north than shown in Timoney et al. 
(1992). This could be explained by differences in mapping methodology, 
or by modest increases in forest cover since 1992, the latter of which is 
supported by analysis of air photos by Timoney and Mamet (2020) in 
this region. 

At a spatial resolution of 30 m, our method will not be sensitive to all 
nuances in changing vegetation structure across the forest-tundra 
ecotone. For example, modeled canopy height may not reflect differ-
ences in canopy cover and stand density within a 30 m pixel. It is also 
likely that sparse stands of smaller trees (close to 3 m) are present in 
pixels where a canopy was not detected. Thus, fine-scale analyses are 
still required to understand mechanisms of treeline change and spatial 
patterns identified in coarser resolution satellite images. Increasingly, 
very high-resolution imagery at the sub-meter scale is becoming avail-
able which would be able to support analyses at the level of individual 
trees and stands (Lantz et al., 2019; Travers-Smith and Lantz, 2020). 
This kind of fine-scale validation is also important because both in-
creases in tree height and stand density are likely occurring simulta-
neously across the ecotone, which may or may not result in changes in 
the northern forest limit (Danby and Hik, 2009; Lantz et al., 2019; 
Travers-Smith and Lantz, 2020). 

Future research using our workflow could also utilize the entire 
Landsat satellite archive (1984-present) to identify changes in canopy 
height and presence over multiple decades. Previous research using 
medium scale satellite data indicate multiple types of ongoing vegeta-
tion and land cover transitions at high latitudes. For example, Berner 
and Goetz (2021) used a time-series of Landsat imagery across the 
circumpolar and found that significant increases in the NDVI were 1.5–3 
times more frequent than decreases in NDVI, especially in regions with 
colder and less dense tree cover. In Alaska and northwestern Canada, 
Wang et al. (2020) observed widespread decreases in boreal evergreen 
forests driven by stand-replacing disturbances, and simultaneous in-
creases in herbaceous and shrub cover in the tundra. By integrating 
active forms of remote sensing with time-series data, our work has the 
potential to quantify changes in the structure of northern vegetation, 
relating to biomass and carbon storage. In particular, estimating 
terrestrial carbon pools at high latitudes is challenged by sparse sam-
pling networks and high spatial variability (Kurz et al., 2013; Virkkala 
et al., 2021). Remote sensing tools can be used to generate broad-scale 
estimates of aboveground carbon storage, which are needed to inform 
carbon accounting at the national scale (Kurz et al., 2013). 

5. Conclusion 

In this study, we derived detailed and spatially continuous maps of 
vegetation structure across 120 mHa of the Canadian forest-tundra 
ecotone and used these maps to automatically delineate the northern 
forest limit. We validated predictions of canopy presence and height 
using fine-scale ALS data and found that our workflow was highly 
effective in identifying vegetation canopies in the 5–10 m range, 
representative of short, growth-limited spruce forests in this region. Our 
findings also highlight limitations and considerations when using 
ICESat-2 ATL08 Land and Vegetation Height product at high latitudes. 
As our method relies on freely available satellite remote sensing data it is 
cost effective, quantitative, repeatable and scalable over large areas. 
These results can inform large-scale monitoring of climate driven 
changes in vegetation structure and carbon storage across the circum-
polar forest-tundra ecotone. 

CRediT authorship contribution statement 

H. Travers-Smith: Conceptualization, Formal analysis, Investiga-
tion, Methodology, Visualization, Writing – original draft. N.C. Coops: 
Conceptualization, Funding acquisition, Supervision, Writing – review 
& editing. C. Mulverhill: Methodology, Writing – review & editing. M. 
A. Wulder: Supervision, Writing – review & editing. D. Ignace: 

Supervision, Writing – review & editing. T.C. Lantz: Supervision, 
Writing – review & editing. 

Declaration of competing interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 

Hana Travers-Smith reports financial support was provided by Nat-
ural Sciences and Engineering Research Council of Canada. Nicholas 
Coops reports financial support was provided by Natural Sciences and 
Engineering Research Council of Canada. Nicholas Coops reports 
financial support was provided by Canadian Space Agency. 

Data availability 

Publicly available datasets used in this study include: ICESat-2 
ATL08 version 5 (https://nsidc.org/data/atl08/versions/5), ASTER 
Global Digital Elevation Model (https://lpdaac.usgs. 
gov/products/ast14demv003/), LVIS Classic L2 Geolocated Surface 
Elevation and Canopy Height Product, Version 1 (https://nsidc. 
org/data/lvisc2/versions/1). Landsat Best Available Pixel (BAP) Com-
posites were generated from Landsat TM and ETM Level-1 Terrain- 
Corrected Surface Reflectance data (https://earthexplorer.usgs.gov/) 
and BAP composites used in this analysis are available on request from 
the authors. R code and datasets supporting this work are also available 
on Github (https://github.com/hztraver/TreelineMapping). Additional 
code, data and model outputs are available upon request from the 
authors. 
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